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I. INTRODUCTION

In meteorological analysis it is often necessary to
analyze fields of data values assigned to a regularly spaced
network of grid points on which only a part of the data is
available. This problem arises in numerous contexts, such
as analysis of synoptic fields with some observations miss-
ing or in analysis of forecast fields from numerical weather
prediction models at arbitrarily chosen time steps. The
latter case results from the use of time iteration tech-
niques in which values are predicted for only the even
staggered (i.e., i + j =2k, k =0, 1, 2,...., where i,
are the grid indices) grid points at one time step and only
at the odd staggered (i.e., i + j =2k +1, k=0, 1, 2,...)
grid points at the next. Various types of analyses may be
desired at arbitrarily chosen time steps in order to closely
observe the evolution of certain features in the field. 1In
order to perform such analyses, values of the parameter under
study must be available at each grid point at the time step
chosen to be analyzed. The problem then is to estimate values
for the grid points where data are missing in the way most
representative of the incomplete field so that information
will be neither added to nor taken from the field.

The solution of this problem requires the use of an
objective interpolation technique to obtain the missing
values. However, care must be taken in the choice of such
a technique so that the incomplete field is not misrepresented
by spurious information which may come about through the act
of completing the field. An example of such distortion is
the aliasing of waves of short wavelengths into longer wave
lengths, therefore artificially changing the spectrum of the
field at that time step. Since a spectral analysis is com-
monly performed on such fields in order to determine the ampli-
tudes of the various wave components within the field, such
distortion in completing the field is obviously undesirable.

The present study considers three objective methods of
completing a staggered data field. A two-dimensional field




with equally spaced grid points in each direction is assumed.

The methods discussed are: (1) a simple algebraic average of .
the values at the four grid points surrounding the grid point

with the missing value, or the Four Point Averaging Method .
(FPAM), (2) rotation of the grid axes by 45° to obtain a l
regular grid network of the given values and a bicubic spline

interpolation using these values, or the Rotation-Bicubic
Spline Method (RBSM), and (3) rotation of the axes and use of
Fourier coefficients from the rotated field to generate a
truncated Fourier series as the interpolation function, or
the Rotation-Fourier Series Method (RFSM). 1In all three
methods it is assumed that the field is periodic, so that
the grid point values are repeated in the regions outside the
grid in the same sequence in which they appear in the grid.
This assumption aids in obtaining values for the boundary
grid points in FPAM and in ‘completing the rotated field in
RBSM and RFSM.
I1., DESCRIPTION OF COMPIETION METHODS AND PERFORMANCE TESTS

In the methods described below, a two-dimensional array
of M grid points equally spaced in both directions is as-
sumed. The two cases of data staggering considered in each
completion method are (1) even staggered data, with data
available only at grid points whose indices (i, j) satisfy
the relation i + j = 2k; k=0, 1, 2,...,M - 1, and (2) odd
staggered data, with values given only at grid points (i, j)
such that i + j=2k +1; k=0,1, 2,...,M - 1, The objec-
tive of each method is to use the known values to obtain repre-
sentative values at the grid points where data are not avail-
able,

A. Four Point Averaging Method (FPAM)

This method calculates a value at each grid point

in the field where data are missing by averaging the values
at the four grid points located immediately above, below, to
the right, and to the left of it in the grid. Thus
Ui g c (ui-l,j* Uisg,j * Ui, 5ot ui’j+1)/4 for each grid
point (i,j) with a missing value. Values are obtained for
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the outermost grid points with missing values by assuming the
field is periodic, so that values are repeated in the regions
ad jacent to the grid. Thus, for the left-most grid points
Uy, 4 ° (uM-l,j tug g tug sgt uo'j+1)/h. The analogous
expressions hold for computation of the missing values of the
grid points on the top, bottom, and right side of the grid.

B. Rotation-Bicubic Spline Method (RBSM)

In addition to FPAM, two interpolation techniques
were examined. Both methods begin with a rotation of the
(i,j) gria axes by 45° counter-clockwise to obtain (I,J)
grid axes of regularly spaced points. This is illustrated
for both the even and odd staggered cases for M = 8 in
Figure 1. The values for the grid points on the I,J axes
are obtained from the given values at locations where they
do not directly coincide by means of the previously stated
assumption that the original field repeats itself in adja-

cent regions. Thus ur g - ui,j where for the even staggered
case
i=>I-J+1;i=1+Mfori=-1,1i=131-Mfori>M-1
j=I+J-1; j=j+Mfor j=-1, j=3j-Mfor j>M-1
and for the odd staggered case

i=1I-4 1t i=1i+Mfori=-1,1i=31-Mfori>MmM-1
j=1+J3-1; j=j+Mfor j=-1, j=j-Mfor j>M-1,

Note that in the resulting configuration, the grid points
with missing values are located in the centers of the grid
squares of the rotated grid network.

At this point, a bicubic spline interpolation
method was used in RBSM to interpolate values for the cen-
ters of the squares. The actual method used is described by
DeBoor (1962)* and involves the development of a bicubic poly-
nomial for each grid square. Thus, the interpolated value F
at any point x,y on the grid, where this point lies within
the grid square I,J such that Xp_q ®X = Xx; and Yy.1 =Y =Yg
is obtained from the polynomial expression

*DeBoor, Carl, 1962: Bicubic spline interpolation. J. Math.
and Ph!s.' _L&, 212"218.
7
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Figure 1. Rotation of the i, axes to obtain the I,J axes
! for even {(top) and odd (bottom) staggered grids. Grid points
marked by x denote locations where original data are available.




The 16 values of for each grld square (I J) are made up

of linear comblnatlons of u, du/9x, /8y, and ) u/9x0y at

the four corners of each grid square. Thus, in order to

. calculate the polynomial coefficients, the value of u and its
three indicated derivatives must be known at each grid point
on the rotated grid. DeBoor's method describes the means of
obtaining the remaining values of the derivatives once the

following values are known:

UI’J ’ I = O' 1'000' M" 1; J = 0, lgnn'M - 1
du1.g
f = ——i= = - H = s 00y -
pI.J“ ax L} I - Ol M 1' J 0) 1, M 1
‘23__1_4 1 M- 1
quJ= ay s I = OI 1’ s ey M - ;J = o' -
: auI 1
. rr s IO M-13 =0, M- 1,

Note that these are the values of the normal derivatives at
their respective outermost grid points on the rotated grid
network. These values were obtained by subjecting the rotated
grid values to a Fast Fourier Transform algorithm to determine
the coefficients of the truncated Fourier series. If we intro-
‘| duce the notation s (x) = sin (Zme/L ), ¢ (y) = cOs
' (2vny/L ), etc., thls Fourier series is expressed in the

‘_ form
- u(x,y) = nCm (x)c (y) + By ¢ (x)s (y)

1
Chn, nsm(x)c (y) + D, nsm(x)s (y) (2)
Since x = I1Ax, y = JAy, and since we are considering the case
AX =AYy, then L = . If we choosed&x =Ay = 1, then

-i%m{!\m nsm(I)c (J) + B S(I)Sn(J)

- CponCp(Ile (3) - D e (D)s (1)}

== gi% {Am nCm(T)s (3) - By ep(T)e ()

+ Cp s (I)s (J) - D s (e (I}




a ke

- L e

OB
ry ;=P < m=omn{Am.nsm(I)sn(J) - Bm,nsm(I)cn(J)

- CponCp(D)sp(J) + Dm,ncm(I)cn(J)}

M
These expressions are used to obtain the respective values

where P = 2I ang sm(I) = sin (PmI),cn(J) = cos (PnJ), etc.

of Py gv 91,9° and ryg only at the grid locations mentioned
above. These values are then used along with the values of
ur g to determine the remaining values of pI,J' qI,J' and
Ty through four sets of systems of algebraic equations
which are solved by Gauss elimination. A description of

the system of equations and a discussion of the technique
used in their solution is given in some detail by DeBoor and
will not be reproduced here.

Once the values of Ui g and its derivatives are
known at all grid points on the rotated grid, the values of
the interpolation coefficient QUfor each grid square (I,J)
are determined from the matrix equation

9’1'J= Alaxy_q) KI.JAT(AWJ-N

where BI—1,J—1 BI-l,J with Uy Ay, w
KI,J = Bv,w =
Brg-1 Bryg Py,w Tv,w
and
1 0 0 0
0 1 0 0
A(h) = _3/h2 _2/n 3/h2 “1/h

2/n>  1/h -2/n°  1/n|

where AT represents the transpose of the matrix A. Since we
have chosen AX ~ay = 1 for all squares, the matrix A is the
same for all computations. The values of y/i:i are the ele-
ments in the kth row and 1th column of the resulting product
matrix. Since the required value corresponds to the center
of each grid square, the interpolation expression for each
csquare 1,J reduces to

10




Fr ;s =§;g }”ii (.5)%(. 57T,

Then Yi,j 7 TI,J where the relationships
i=I-J+1; i=1+Mfori=-1,31=1-MTfFfori>M-1
j=I+4J i j=j+Mfor j=-1, j=3j-Mfor j>M-1

for the even staggered case, and
i=I-J;i=1+Mfori=-1,1i=1i-Mforid>M-1
j=I1+J; J=Jj+Mfor j=-1,3j-=17] M for j> M -1

for the odd staggered case are used to locate the interpo-
lated values at their proper location in the original grid.
The resulting values ui.j’ i=0,1,.00.,M-1; 3=0,1,..,
M - 1 represent the values of the completed field for the

parameter u.
C. Rotation-Fourier Series Method (RFSM)

This method uses the rctated grid values obtained
in the manner described above and uses the truncated Fourier
series (2) to interpolate values at the centers of the grid
squares. First, the rotated grid values are subjected to
the Fast Fourier Transform algorithm as in RBSM, and the co-

oy Bm,n’ Cm,n and Dm,n form=0, 1,...,M/2;

n=20,1, ...M/2 are obtained. Then the interpolated value F

for the center of each grid square (I,J) is given by the expres-

sion M/2 M/2
_E E i Y 1 1
FI,J —n=0 £ {Am,ncm(I +2)Cn(J + 2) + Bm'ncm(l + 2)Sn(J + 3)

by (T Bde (3 + )+ D o (T4 B)s (0 + D] (3)

efficients Am

where again we have chosen AXx =AYy = 1. Thus ui,j = FI.J
for the indices (i, j) of the grid points with missing values,
and the interpolated values are located at their proper loca-
tion in the original grid in a manner similar to that used

in RBSM.

After each method was formulated, it was tested to
determine its performance characteristics. Of particular in-
terest was the manner in which each method might distort
periodic variations existent in the original complete field.
To determine this effect quantitatively for each method, the
values of products of transcendental functions at the dis-

11
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crete intervals were used as the original grid point values.
For example, values for the product cos (2¢ymi/M) cos (2¢nj/M)
i=0,1, 2,000, M-1; j=0,1,2, ..., M -1 for various

values of m,n = M/2 were used for the grid point values in

one set of runs for each method. However, only the values

of these functions at either even or odd grid points were

used as inputs for the computations, and the respective

methods were used to fill in the missing values. Computa-

tions were carried out for only one value of M (M = 16), but

it is believed that any even value for M will yield the
. corresponding results.

I11. RESULTS AND DISCUSSION

The results of the model tests are interpreted from

the harmonic analyses of the fields completed by each method.
t Since the values of the coefficients of the Fourier terms
which make up the complete input field are known, the ability
of each method to replicate this field from the staggered
data is determined by comparing the known coefficients with
the values of the Fourier coefficients which represent the
completed field. Any departure of the coefficients that
describe the completed field from the coefficients of the
original complete field represents a harmonic distortion
brought about by the completion method used.

The effect of FPAM was to partially distort the compo-
nent (m,n) present in the staggered input field for all
values of m,n>0. The distortion always occurred in such
a way that a portion of the amplitude of the component that
was present in the original field was lost to the component
BM/Z) -m, (M/2) - n]. which shall be referred to as the
complementary component of (m,n). This distortion can be
viewed more quantitatively by considering the use of FPAM

Ve
[}

in completing the field made up of the even or odd staggered
| values of the function ¢ (i,j) defined by

‘ ¢(i'j) =n=C m=o{qm.ncm(i)cn('j) * /&m.ncm(i)sn(j)

1. © Smnnlen(3) + J:n.nsm(i)sn(j)} (4)
12




for i,j =0, 1, 2,..., M - 1 and the arbitrary (M/2) + 1 by
(M/2) + 1 matrices d‘.ﬂ. [ and S-. Since FPAM calculates
the missing values in the grid by means of a linear combina-
tion of the known values, it can be thought of as a linear

operator in completing the field. When FPAM is used to
complete a staggered data field composed of a linear com-
bination of several components, the results are equivalent
to the sum of the fields of the individual components as
completed by FPAM. This was verified in several test runs.
For this reason, the results of the completion of the
staggered values from (4) above could be inferred from the
results of completing fields represented by individual
terms in the series. The Fourier coefficients representing
the field that would result from the completion of the even
staggered values from (4) are:

Ann =6m.n(d.m.n * a(M/Z)—m, (M/2)—n)

Bm.n =ém.n( ﬂm.n - .ﬂ(M/Z)—m, (M/2)-n)

Coon = ém.n( Sm,n - OI(M/Z)-m. (M/2)-n)

Dnn =ém.n( [;n.n * {(M/z)-m. (M/2)—n)'

The coefficients which represent the field completed from the
odd staggered values are:

Am,n :ém,n( dm,n - (M/2)-m, (M/2)—n)
Bm.n :ém.n((gm.n +ﬁ(M/Z)-m. (M/2)—n)
Cm,n '—'ém.n( Ym,n * K(M/z)-m. (M/2)—n)

Dhyn =ém.n( 51-n.n ) ‘Y(M/Z)—m. (M/2)-n)‘

In these expressions, A c , and Dm n represent
»

m,n’' “m,n' “m,n
the coefficients of the truncated Fourier series (2) for the

completed field and ém n 18 a measure of the distortion of
’




the (m,n) component present in the staggered field and shall
be referred to as the response function for FPAM. Values

of‘éh n for selected values of (m,n) are displayed in Table 1.

TABLE 1. Values of Response Function 4% n for FPAM, M = 16.

8 4810 3457 .1543 ,0190

7 .5190 .5000 .4458 ,3647 .2690 .1734 .0923 ,0381 .0190
é . 5542 4189 2276 0923

5 6543 .6353 .5811 ,5000 4043 .3087 .2276 .1734 .1543
4 .7310 + 5957 JLokL3 .2690

3 .8Ls57 .8266 .7725 .6913 .5957 .5000 .4189 .3647 .3457
2 . 9078 7725 . 5811 A4 s8

1 .9810 .9620 .9078 .8266 .7310 .6353 .5542 .5000 .4810
0 .9810 ,8457 6543 » 5190

0 1 2 3 4 5 6 Vi 8

Note that ém,n = é'n.m for all (m,n), indicating the sym-

metry resulting from the use of a square grid. The value
of é}nﬂjrepresents that fraction of the amplitude of the
harmonic (m,n) present in the original field which is pre-
served in the completed field and the fraction of the ampli-
tude of its complementary harmonic which ic aliased in such
a way as to result in constructive (+) or destructive (-) |

interference with the wave with components (m,n). Note also
that & + 6(M/2)-m, (M/2)-n = 1 for all (m,n); thus the
complementary harmonic has the complementary fraction of its
amplitude preserved in FPAM. Table 1 shows that this frac-
tion decreases with increasing value of the sum m + n, or
with increasing value of one of the two components when the
other is held constant. Thus, a larger fraction of the
amplitudes of the longer waves (smaller wave components) than
those of shorter waves are preserved when FPAM is used to
complete the field. Only a small amount of their amplitude
it lost to the complementary short wave. In contrast, the

shorter waves are heavily aliased to their long wave complements.
14




The relationship between the results for the comple-
tion of the even staggered field and those for the odd stag-
gered field comes about from the way complementary harmonics
combine to make up the even and o0dd staggered values. To il-
lustrate this, consider the values of the sum of the two com-
plementary components

& ncos (Pmi)cos (Pnj) +d(M/2)-m, (M/z)_ncos{P[(M/Z - m]i}

X cos{P[(M/2) - n)i}.

It can be shown that this sum is equivalent to
BZ%’n + (M/2)-m, (M/2)-nC°S (Iri)cos ﬂTjﬂ cos Pmi cos Pnj.
The factor cos (i)cos (Ij) is positive for even staggered
values of (i,j), and negative for odd staggered values.
The term in bdrackets represents the complete amplitude of the
(m,n) component of the cos-cos term within the staggered
field, and it is actually this amplitude that is modified by
FPAM. Since all of the data values used to generate the
missing values are represented by this expression, the sign
in the amplitude is preserved in the completed field. Thus,
the entire completed field is made up of components of this
form with an amplitude modification, as can be seen in the
Fourier components of the field as completed by FPAM. The
same sign orientation can be shown to hold for the sin*sin
terms, while the opposite relationship (amplitudes additive
for odd staggered grid points, subtractive for even stag-
gered grid points) exists for the cos'sin and sin¢cos
terms in the Fourier expansion. Since complementary com-
ponents combine in this way to represent the even and odd
staggered values on which the completed fields are based,
regardless of which completion method is used, the Fourier
coefficients representing the completed fields using any
method will have this general form.

This fact is borne out in the results of the use of
RBSM to complete the staggered data field. Again, if we use
the even and odd staggered values of (4) as our incomplete
fields, we find that the field completed from the even
staggered data has the Fourier components

15
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e
Am.n = ym.n( Czm.n * q'f(M/Z)—m. (M/2)-n) * r‘A

m,n
e .
Bm.n = Vm.n({ém.n - fé(M/z)-m. (M/Z)—n) * FBm n
e
Con = Vm.n( Km.n - &M/Z)-m, (M/2)—n) * r::m.n

e
Dm,n = Vm,n( {m.n M A?M/z)-m. (M/2)-n) M FD

m,n

and the completed odd staggered field has the components

)
m,n l{n,n( xm.n - ‘Z(M/Z)—m. (M/2)—n) M r;‘m.n
)

m,n ){n,n(/gm.n * /%M/Z)-m. (M/2)—n) * r‘B

-
x>
1]

jor
!

Cm.n = I/m.n( {m.n * b?M/Z)-m. (M/2)—n) * Cm,n
] o
Dhon = ‘éhrﬁ 5;.n - é;ﬁ/z)-m, (M/Z)-n) * f;

m,n

In this case, the response function can be separated into a

sum of two separate factors. The factor ){n n' displayed as
’

a function of m and n in Table 2, is the primary response

TABLE 2. Primary Response Function Vm n for RBSM, M = 16

e L3548 .0767 . 0067 .0001
7 .6Ls52 .5000 .2528 .1147 .0430 .0135 ,0034 ,0006 .0001
6 . 7472 2334 . 0L00 0034
5 .9233 ,B853 ,7666 .5000 .2316 .1080 .040O .0135 ,0067
n L .9570 . 7684 .2316 . 0430 :
) 3 .993% 9865 .9601 .8920 .7684 .5000 .2334 .1147 .0767 '
L L. » .996€ .9601 . 7666 .2548
, 1 .9999 .9995 .9966 .9865 .9570 .8853 ,7472 .5000 3548 .
. 9999 9934 .9233 6452 ’
1 2 3 i 5 6 Vi 8
m
16
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function and behaves in a manner similar to the response
function em.n from FPAM. However, when even or odd staggered
. values from a single Fourier term are used as input, non-
zero Fourier coefficients for other than just that component
(m,n) and its complement are involved in the resulting field.
For example, appreciable values for the Fourier coefficients
Bm,n' Cm.n' and Dm n in addition to Am.n existed for many
values of (m,n) w1th1n the completed field when even or odd
: values for cos (2mmi/M)cos (21hj/M) were used in the in-
* complete field. This indicates a sort of spectral spread-
ing of the harmonic originally existent in the input field
¥ by RBSM, which was not at all evident in FPAM. The factor [!
: in the expressions represents this distortion. The nature of
this departure in both magnitude and phase distortion was
investigated by using values of the function cos (2ki/M)
. cos (2r11j/M) for various integer values of k, 1< M/2 at
even staggered grid points. These incomplete fields were
then completed using RBSM. For each pair of values (k,1l)
used, the completed field is given by the expression

Pii i) = [V 1+ (- B DeostTi)eosiN] ey (1)ey(§)

1-1 1
+[1 - cos(Tri)cos(rrj)]X {n§=:(3 =~ [§A c,(i)e, (3)

m,n

*+ ?B cn{id)s, (§) + {C sp(1)e, (J)

m'n m'n

.%~ -"’j’;)%_e\i At .‘)‘w 12 :';M"}%m: 24 sia k- RN

+ st’nSm(i)Sn(j)} + gBk lck(i)sl(j)
+ Sk(l)cl(J) + ; Sk(l)sl(J)
+

fe iy

L}) 1 (M/4) -
E; E% L?- cn (1)c (j) + ;’ cm(i)sn(j)
m,n v

(10e_(5) + 7. s (i)s.(] (5)

+ gcm’nsm 1 Cn J Dm'nsm 1 Sn Ji}

1 £ M/2, and by

= %[1 + coshTi)costhﬂ ck(i)cl(j) (6)
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for k + 1 = M/2 which is identically zero at odd staggered
grid points. Note that both expressions reduce to cos(2mki/M)
cos(21Lj/M) at even staggered grid points as is expected
since these were the values given as input. The form of (5)
comes about because it was observed from the Fourier analysis
of the resulting field that for all cases where k + 1 # M/2
and for all m,n = (M/2) - 1,

Am.n ) -;A(M/Z)—m. (M/2)-n
¢

m, n B(m/2)-m, (M/2)-n

§

mn CM/2)-m, (M/2)-n

S A
n \

m,n _g-D(M/Z)—m, (M/2)—n.

The value of twice the quantity in{ } in (5) was obtained at
all odd staggered grid points by subtracting the value of
the first term in (5) from the completed field values at all
odd grid points. The magnitude of the resulting field of
odd staggered departure values was evaluated by averaging
their absolute values over the grid. The average absolute
values from each completed grid for odd values of 1 are dis-
played in Table 3. The magnitude of tris departure of the

TABLE 3. Average Absolute Value of Secondary Distortion
Factor Obtained from Using RBSM on Even Stag-
gered Values of cos(2wki/M)-cos(2wrlj/M)

.04831 .02138 ,00695 .00192 ,00034 ,00004 .00005

.05192 ,00002 .04906 .01515 ,00768 .00206 .00078

.00768 .01515 .04906 ,00002 .05192 ,02209 .01563

.00034 .00192 ,00695 .02139 .04831 .00002 .05850
2 3 L 5 6 7 8

18




iy

V2

iy,

¥

H

!

I

v

|

L2

P

b

i

-

3

y

P i

i,

s

! v

| PO
'

s »
1\

> ~

v

generated values from the primary response function lﬁ.l
is largest for values of (k,l) near k + 1 = M/2 and de-
creases with increasing value of |(M/2) - (k + l)l. Its
value drops to zero at k + 1 = M/2 as is indicated by (6).
The odd staggered departure values were plotted on a hori-
zontal grid, and shading was added to distinguish the regions
of positive and negative values and thus indicate the distri-
bution of phase of the departure component. The results of
this analysis for four pairs of values for (k,l) are shown
in Figure 2. The existence of several wave numbers in
both directions is evident in each diagram, again indicating
a spectral spreading of the original component over a narrow
band of wave components. No clear correlation of the width
of this band with values of k + 1 was observed, in contrast
with the variation in the amplitude within the departure
fields with k + 1 as shown in Table 3. However, tl. >y mono-
tonic variation of the primary distortion factor )é.n from
RBSM in contrast with the variation in magnitude of this
secondary distortion with k + 1 indicates the distinctly
separate nature of these two distortions which come about in
the use of this method.

The results from the data grid completion using the
RFSM have the general form common to all methods as discussed.
previously. Again, using the even staggered values from (4)
on an M x M data grid, the RFSM yields a completed field
with the Fourier coefficient values

Czﬁ,n * (M/2)-m, (M/2)-n B *D < M/2
Am,n = %(Czﬁ,n + (M/2)-m, (M/2)-n s m+n = M2
0 im+ n>» M2

/jm,n 'é‘M/z)_m' (M/2)-n +n< M/?2

m
m,n %(/Qm’n 'léim/Q)-m, (M/2)-n) ¢ M+ 0= M/2
° > M/2

=}
n

=]
+
3

m.n ) &M/Z)-m. (M/2)-n # M+ n<M2
m,n e Km.n B &M/Z)-m. (M/2)-n) = M/2
0 im+ n> M2
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L .
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k=1, I=5 k=6, I=1
»
]
[ R Figure 2. Distribution of phase in the secondary distortion
. factor from RBSM. Shaded areas are regions where distortion .
factor has a positive value; unshaded regions indicate
PR

negatives.
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while the completion of the odd staggered field yields the
coefficient values

X - a%M/Z)-m, (M/2)-n * M+ n<M2

Am.n = %(xm.n - QM/2)-m. (M/Z)—n) i m+n= M2

0 M/2
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+
fa}
v
=
™~
N

+

Km.n &M/Z)—m, (M/2)-n ' M*NC M/2
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jw)
"
o
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m.n ( é:n-n ) ‘)(’M/Z)-m. (M/2)-n) ? M+ n=M/?2

o
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These results were inferred from using single Fourier terms
to generate the incomplete fields and using the fact of the
linearity of the completion operator as was done in FPAM.
They are similar in nature to those obtained from FPAM. The
only difference is that instead of a continuous response
function as in the case of FPAM, here we have a response
function with only three values over the entire range of
values of the sum m + n. For values of m + n<M/2, the en-
tire amplitude of the complementary wave component is aliased
to either add to or subtract from the amplitude of the wave
with components m,n. For the sum m + n = M/2, the response
is identical to that of FPAM - exactly half of the ampli-
tude of any component is preserved, and half of the ampli-
tude of its complementary component is either added to or
subtracted from it. Finally, for components (m,n) such that
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m+ n > M/2, the entire wave is aliased to its complement
which always has components whose sum is less than M/2.

In all three methods, partial or total aliasing of
short waves to their long wave complements occurs. We have
discussed the fact that this is unavoidable because of the
way complementary components combine when using the sums of
their values at even or odd staggered grid points to make up
the incomplete grid. This effect would also occur in the
completion of an observed meteorological field in which
values of the variable are available only at staggered
grid points, since any natural field is made up of a sum
of many pairs of complementary components when it is exam-
ined according to a particular spatial resolution on a
limited-area grid. However, in RBSM an additional distor-
tion that was not obvious in the other two methods appears
in the form of the spreading out of a component present in
the incomplete field over a narrow band of harmonics.

Since naturally occurring meteorological fields are made
up of an infinite number of components, it is evident that
the use of such methods in completing staggered meteoro-
logical data fields will result in some aliasing of short
waves into longer waves., For an M x M data grid, the ampli-
tudes of waves with components (m,n) such that m + n < M/2
will be increased at the expense of the shorter waves. How-
ever, in most meteorological fields, the amplitudes of the
longest waves are usually the largest, and the amplitudes
decrease with increasing wave number. For example, usually
the largest variations in the pressure field occur on the
synoptic scale, with mesoscale and microscale pressure per-
turbations usually being smaller in amplitude (except
possibly when areas of severe storms lie within the region
of interest). For this reason, there is some advantage in
the use of RFSM to complete such a field in that the only
distortion occurring to longer waves is the addition or sub-
traction of the amplitude of the complementary short waves.
No fractional distortion occurs in waves with components (m,n)
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such that m + n <« M/2, If the amplitude of the short wave is
small, the distortion of the amplitude of the long wave is
minimized, while the short wave is aliased out altogether.
While this complete removal of waves with components (m,n)
such that m + n > M/2 must be considered a disadvantage to
the use of RFSM, it is possible that the longest of these
waves could be preserved in the completed field if greater
spatial resolution were employed in the grid. However, they
will be somewhat modified by the waves just shorter than the
new value of the critical wave number criterion (m + n = M/2).
Iv. SUNMMARY AND CONCILUSIONS

The results of this study may be summarized with the aid
of the schematic diagram in Figure 3. In this diagram, the
wave number in the x direction of the grid (m) is on the
abscissa, while the y wave number (n) is on the ordinate.

The three wave number pair categories are indicated in the
figure. When m + n < M/2, the waves present in the original
complete field are resolvable in the staggered field. When
m+ n = M/2, the variations are only partially resolvable on
the staggered grid. For cases where m + n > M/2, waves

which can be resolved in the complete field cannot be resolved
on the staggered field because the number of grid points in
each direction is halved. These facts greatly influenced the
ability of the methods to complete the fields correctly.

When RFSM was used to complete the staggered fields
derived from the complete fields in which only the long waves
(m + n < M/2) existed, no aliasing was observed. When FPAM
and RBSM were used, a fraction of the amplitude of each of
these harmonics was aliased to their complementary
[(M/Z) - m, (M/2) - é]components. and this fraction increased
with the sum m + n. The balance of the amplitude was retained
by the original component (m,n)}. In addition, some appre-
ciable amplitudes were observed in other components in the
case of RBSM, indicating an introduction of spurious infor-
mation into the completed field. For cases in which m + n
= M/2, all three methods completed the fields in the same
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Figure 3. Schematic diagram of wave number space; m is
wave number in x direction, n is wave number in y
direction.
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manner: half of the amplitude of the component was preserved
in the completed field, and half was aliased to its comple-
ment. Finally, in cases where only the short waves (m + n
> M/2) were present in the original field, the entire ampli-
tude of the (m,n) component was aliased to its complement
when RFSM was employed. In contrast, FPAM and RBSM showed
an aliasing of only part of the amplitude to the complementary
component as they did in the m + n < M/2 cases. The amount
aliased in the m + n >M/2 cases continued to increase with
the sum m + n; in fact, the amount of amplitude retained in
these components is exactly the amount that had been lost by
their complements through aliasing in the m + n < M/2 cases.
As was observed in the m + n < M/2 cases, RBSM introduced
artificial amplitude values for other harmonics.

Because the short waves (m + n > M/2) are unresolvable
on the staggered grid, none of the methods was able to
replicate the fields which contained these small scale varia-
tions. RFSM had a perfect record of completing the fields as
long as only long waves (m + n < M/2) were present, while
the other methods had varying degrees of success even with
these large scale variations. These results show that the
Rotation-Fourier Series Method can be successfully used to
complete staggered data fields when it is certain that only
these long waves are present in the sample under consideration.
If the spectrum of the data field contains variations of
numerous spatial scales, as is true in most cases, aliasing
from short waves to long waves will occur in the process of
completing the field. Without knowing the spectrum of the
original field, it is impossible to ascertain the exact
spectral distortion that will occur. The completed field must
be considered at best an estimate of the true field from which
the staggered values were derived.
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